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Abstract

In this paper, we will show that the generalized Möbius functions associated to a certain
family of L-functions are weakly orthogonal to bounded sequences.

1 Introduction

The well-known Prime Number Theorem has several equivalent forms, one of which saying that

lim
N→∞

1

N

N∑
n=1

µ(n) = 0

where µ(n) denotes the Möbius function, defined by the following Dirichlet series:

ζ(s)−1 =
∞∑
n=1

µ(n)

ns

for ℜ(s) > 1, with ζ(s) being the Riemann zeta function. This result can be rephrased in the
following general framework: Let a(n) and b(n) be two arithmetic functions. We say they are
asymptotically orthogonal to each other, if

lim
N→∞

1

N

N∑
n=1

a(n)b(n) = 0

We say they are weakly orthogonal to each other, if there exists some δ > 0 such that

N∑
n=1

a(n)b(n) = O

(
N

logδ N

)
We say they are strongly orthogonal to each other, if for any (large) A > 0, we have

N∑
n=1

a(n)b(n) = OA

(
N

logAN

)
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where the notation OA means the implied constant depends on the choice of A. Obviously, strong
orthogonality implies weak orthogonality, and the later implies asymptotic orthogonality. Using this
language, the Prime Number Theorem mentioned above can be restated as: The Möbius function
µ(n) is asymptotically orthogonal to the constant function 1.

Davenport’s work [Dav37] expanded the above result. He showed that the Möbius function
µ(n) is strongly orthogonal to any linear phrase e(nα), where α is any real number. Moreover, the
estimate is uniform in α. It should be noted that a key step in Davenport’s proof is to make use of
Siegel’s Theorem, which states that for any ϵ > 0, there exists an (ineffective) constant cϵ > 0 such
that for any non-principal Dirichlet character χ with conductor q, the Dirichlet L-function L(s, χ)
has no zero in the interval (

1− cϵ
qϵ
, 1

)
In 2012, Green and Tao [GT12] showed that µ(n) is strongly orthogonal to any nilsequence. Later

it was observed and conjectured by Sarnak [Sar12], [Sar] that the Möbius function µ(n) behaves so
randomly that it should be asymptotically orthogonal to any ”low-complexity” sequence. The term
”low-complexity” can be made precise using dynamical language. Explicitly, let (X,T ) be a flow
with zero entropy. Then for any point x ∈ X and any continuous function f : X → C, Sarnak’s
conjecture predicts that the arithmetic function f(Tnx) should be asymptotically orthogonal to
µ(n).

In the past ten years after Sarnak’s conjecture was formally proposed, several special cases have
been verified, leading to applications to many branches of mathematics including number theory,
ergodic theory and others. To mention an example, Liu and Sarnak [LS15] verified the case where
(X,T ) is an affine linear flow on a compact abelian group with zero entropy.

Sarnak’s conjecture can be naturally generalized in view of the following analytic identity

ζ(s)−1 =

∞∑
n=1

µ(n)

ns

If we replace the Riemann zeta function ζ(s) by any L-function L(s, π) of degree d+ 1 with Euler
product expansion

L(s, π) =
∏
p

d+1∏
i=1

(
1− αi(p)

ps

)−1

for ℜ(s) > 1, then its reciprocal is a Dirichlet series. We denote the coefficients of that series by
µπ(n) and call it the Möbius function associated with π. Thus the following analogous identity
holds:

L(s, π)−1 =
∞∑
n=1

µπ(n)

ns

for ℜ(s) > 1. The arithmetic function µπ(n) shares similar properties with the usual Möbius
function µ(n). For example, it is multiplicative and is supported on (d+ 2)th power free integers.

It then can be asked if the generalized Möbius function µπ(n) is asymptotically (or weakly/strongly)
orthogonal to any ”low-complexity” sequence. Jiang and Lü [JL19] studied this question when π
is a Maass form for SL(2,Z) or SL(3,Z). Explicitly, they proved that if F is a Maass form for
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SL(2,Z) or SL(3,Z), then there exists a constant cF > 0 such that for any real number α, we have

N∑
n=1

µF (n)e(nα) = O(Ne−cF
√
logN )

where the implied constant does not depend on α. In particular, this implies µF (n) is strongly
orthogonal to any linear phrase e(nα), a natural generalization of Davenport’s work [Dav37]. It
should be noted that, like in Davenport’s proof, a key step in Jiang and Lv’s proof is Banks’ result
[Ban97] (resp. Hoffstein and Ramakrishnan’s result [HR95]) that GL(3) (resp. GL(2)) cusp forms
do not admit Siegel zeros. Results of this power allow them to get much better estimate than just
arbitrary logarithm power saving as in Davenport’s result.

It seems natural to employ results about non-existence of Siegel zeros to study orthogonality
between generalized Möbius functions and linear phrases. But unfortunately very limited knowledge
about Siegel zeros is known for higher rank cases (or higher degree cases). In this paper, we will
take a different approach to show:

N∑
n=1

|µπ(n)| = O

(
N

logδ N

)
for certain L-functions L(s, π). (Here δ is some positive number depending only on the degree of
L(s, π).)

Theorem 1.1. Let d ≥ 1 be a positive integer. Let L(s, π) be a self-dual, everywhere unramified
L-function of degree d+ 1. Suppose that L(s, π) satisfies the Ramanujan conjecture and for x > 0,

(a)
∑
p≤x

λπ(p)2

p = log log x+O(1);

(b)
∑
p≤x

λπ(p)4

p ≥ (d+ 1) log log x+O(1).

Then we have, for x > 0, ∑
n≤x

|µπ(n)| ≪
x

(log x)δd

for some δd > 0. Here δd will be defined in Equation (1).

As a direct corollary, Theorem 1.1 implies that µπ(n) is weakly orthogonal to any bounded
sequences:

Corollary 1.2. Let L(s, π) be an L-function as in Theorem 1.1. Let {b(n)} be a bounded sequence.
Then for x > 0, we have

lim
x→∞

1

x

∑
n≤x

µπ(n)b(n) = 0.

This implies that µπ(n) is weakly orthogonal to any ”low-complexity” sequence described earlier,
since such sequences are bounded.
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Corollary 1.3. Let L(s, π) be an L-function as in Theorem 1.1. Let X be a compact space and
T : X → X be a continuous map of zero entropy. Then for x > 0, any continuous function
f : X → C and x0 ∈ X, we have

lim
x→∞

1

x

∑
n≤x

µπ(n)f(T
nx0) = 0.

Here the convergence is only dependent on the sup-norm of f.

We then give a family of examples satisfying the conditions in Theorem 1.1—–the Rankin-Selberg
L-functions

L(s,Symm1f ⊗ Symm2g)

where f, g are distinct normalized holomorphic Hecke eigenforms for SL(2,Z). The result is formu-
lated as follows:

Corollary 1.4. Let f, g be distinct normalized holomorphic Hecke eigenforms for SL2(Z). Then for
any positive integers m1,m2 ≥ 1, we have:∑

n≤x

|µπ(n)| ≪
x

(log x)δ

where π = Symm1f ⊗ Symm2g and δ = δ(m1+1)(m2+1)−1.

This corollary relies on the functoriality result by James Newton and Jack Thorne [NT21]
showing that for a holomorphic cusp form f of SL2(Z), its symmetric power lifting Symmf is an
automorphic cuspidal representation of GLm+1.

Finally, we establish the following theorem for Maass forms of SL(2,Z):

Theorem 1.5. Let ϕ be a normalized Hecke Maass form for SL2(Z). Then for any x > 0,∑
n≤x

|µϕ(n)| ≪
x

(log x)1/12
.

This can be much harder since we do not have the Ramanujan-type bound nor the full func-
toriality result. However, we can still follow the idea of Theorem 1.1 and Corollary 1.4 to prove
Theorem 1.5. As a direct application, this also implies that µϕ(n) is weakly orthogonal to any
bounded sequences and hence “low-complexity” sequences.

2 Proof of Theorem 1.1

Proof of Theorem 1.1 Since π satisfies the Ramanujan conjecture, we can apply Shiu’s result
[Shi80, Theorem 1] on the sums of nonnegative multiplicative functions. That implies:

∑
n≤x

|µπ(n)| ≪
x

log x
exp

∑
p≤x

|µπ(p)|
p

 .
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Notice that µπ(p) = −λπ(p). It suffices to show that∑
p≤x

|λπ(p)|
p

≤ (1− δd) log log x.

The left proof used the idea of [TW16, Thereom 4] in Section 3.2. We need to replace all m by
d in [TW16, Lemma 3.3]. Notice that in their lemma, one has a2(m) < 0 and hence it suffices to
show that ∑

p≤x

λπ(p)
4

p
≥ (d+ 1) log log x+O(1).

It was shown in [TW16, Lemma 3.3] that

δd =
d(d+ 2)

d2 + 3d+ 1

(
d+ 3

d+ 2
−
√

d+ 2

d+ 1

)
> 0. (1)

3 Proof of Corollary 1.4

Before the proof of the corollary, we need several lemmas. By the functionality lifting, we have

Lemma 3.1. Let f be a normalized holomorphic Hecke eigenforms for SL2(Z). Then for positive
integers m1 ≥ m2 ≥ 1, we have:

Symm1f ⊗ Symm2f ≃ Symm1+m2f ⊞ Symm1+m2−2f · · · Symm1−m2+2f ⊞ Symm1−m2f.

The last term is the trivial representation when m1 = m2.

For the second lemma, we need several density functions on the set of primes: denote by P the
set of all prime numbers and let S be a subset of P. Denote by δ(S) (resp. δ(S)) the upper (resp.
lower) Dirichlet density of S. Denote by d(S) (resp. d(S)) the upper (resp. lower) natural density
of S. It can be shown that, for any set S ⊆ P,

0 ≤ d(S) ≤ δ(S) ≤ δ(S) ≤ d(S) ≤ 1.

Then we can prove the following lemma:

Lemma 3.2. Let f, g be distinct normalized holomorphic Hecke eigenforms for SL2(Z). Then for
any positive integer m ≥ 1, Symmf is not isomorphic to Symmg as cuspidal representations on
GLm+1. Moreover, for any positive integers m1,m2 ≥ 1 Symm1f is not isomorphic to Symm2g.

Proof It suffices to consider the case m1 = m2 = m. For m = 2, this is true because they are
eigenforms on SL2(Z) and one cannot be the quadratic twist of the other one [Ram00]. So we would
focus in the case m ≥ 3. This follows the idea of [CM04, Proposition 5.1].

We first consider the case when m is odd. Set:

S = {p ∈ P|af (p) ̸= ag(p)}.
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Then we know that δ(S) ≥ 1/4 by [Wal14, Theorem 1].
Fix m ≥ 3. Assume that Symmf is isomorphic to Symmg. Denote by {αp, α

−1
p } (resp. {βp, β−1

p })
the Satake parameters of f (resp. g) at the prime p. Then for all p, we have

{αm
p , αm−2

p , . . . , α2−m
p , α−m

p } = {βm
p , βm−2

p , . . . , β2−m
p , β−m

p }

Then that p ∈ S implies that αn
p = 1 for some nonzero n dependent on m. This is because,

af (p) ̸= ag(p) implies that {αp, α
−1
p } ̸= {βp, β−1

p }. Then βp = αn′
p (m is odd and hence βp is inside

the set) for some n′ satisfying 1 < |n′| ≤ m. However, βm
p ∈ {αm

p , αm−2
p , . . . , α2−m

p , α−m
p } and hence

βm
p = αm′

p for some m′ satisfying |m′| ≤ m. This shows

αm′
p = βm

p = αmn′
p .

It is easy to see that 0 < |mn′ −m′| ≤ 2m2. This will show that αn
p = 1 for some nonzero n. In this

case, we define
Sn = {p ∈ P|αn

p = 1}

Then we can find a large N (for example, we can take N = (2m2)!) such that S ⊆ SN . and hence
1/4 ≤ δ(S) ≤ δ(SN ) ≤ d(SN ).

However, we can show that d(SN ) is small by Sato-Tate [BLGHT11]: set αp = eiθp . (Here I
would assume that θp ∈ [0, π] since we can replace αp by α−1

p .) Then the Sato-Tate predicts:

#{p ∈ P|p ≤ x, θp ∈ (α, β)}
#{p ∈ P|p ≤ x}

∼ 2

π

∫ β

α
sin2 θ dθ.

Then set IN to be the set supported on [0, π] satisfying the following conditions: (i) let x ∈ [0, π],
if eiNx = 1, then x ∈ IN ; (ii) the measure of IN is small such that

2

π

∫
IN

sin2 θ dθ <
1

8
.

This will show that

d(SN ) ≤ lim sup
x→∞

#{p ∈ P|p ≤ x, θp ∈ IN}
#{p ∈ P|p ≤ x}

= lim
x→∞

#{p ∈ P|p ≤ x, θp ∈ IN}
#{p ∈ P|p ≤ x}

<
1

8
.

A contradiction.
When m is even, we define the set

S = {p|af (p)2 ̸= ag(p)
2} = {p|aSym2f (p) ̸= aSym2g(p)}.

Since f and g are cusp forms of SL2(Z), Sym2f is not isomorphic to Sym2g. It is known, by Lemma
3.1, that Sym2f ⊗ Sym2f can be written as the isobaric sum of cuspidal representations. Then by
[Wal21, Theorem 1.6], we know that

δ(S) ≥ 1

28
.

Fix m ≥ 4 even and we assume that Symmf is isomorphic to Symmg. Then for each finite p, we
have:

{αm
p , αm−2

p , . . . , α2−m
p , α−m

p } = {βm
p , βm−2

p , . . . , β2−m
p , β−m

p }.
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It is clear that {α2
p, α

−2
p } ≠ {β2

p , β
−2
p } by the definition of S. Then we consider two separated cases:

(i) β2
p = 1 and (ii) β2

p ̸= 1. For the first case, we know that the right hand of the set is just {1, . . . , 1}
and this will give α2

p = 1. For the second case, we assume that β2
p = αn′

p with some integer n′

satisfying 4 ≤ |n′| ≤ m. By a similar argument as the odd case, we can find nonzero n such that
αn
p = 1 and such n satisfies |n| ≤ 2m2. there exists a large integer N such that S ⊆ SN . Then a

similar argument will show that

1

28
≤ δ(S) ≤ d(SN ) <

1

56
.

A contradiction.
Combine [CKM04, Theorem 9.2], Lemma 3.2 and [IK04, Theorem 5.13], we have the following

results:

Lemma 3.3. Let f, g be normalized holomorphic Hecke eigenforms for SL2(Z). Then foe any positive
integers m1,m2 ≥ 1, we have:∑

p≤x

λSymm1f (p)λSymm2g(p)

p
= δm1,m2δf,g log log x+O(1).

Here δm,n = 1 if and only if m = n and it is 0 otherwise. δf,g = 1 if and only if f = g and it is 0
otherwise.

Proof of Corollary 1.4: Let π = Symm1f⊗Symm2g. and hence L(s, π) is of degree (m1+1)(m2+1).
It is known that L(s, f) and L(s, g) satisfy the Ramanujan conjecture and so is L(s, π). In addition,
we have

λπ(p)
2 = λπ⊗π(p)

and
λπ(p)

4 = λπ⊗π⊗π⊗π(p)

Therefore, by Lemma 3.1 and Lemma 3.3, we have∑
p≤x

λπ(p)
2

p
= log log x+O(1);

and ∑
p≤x

λπ(p)
4

p
= (m1 + 1)(m2 + 1) log log x+O(1).

Then by Theorem 1.1, we finish the proof.

4 Proof of Theorem 1.5

For the Maass form case, we do not have the Ramanujan type bound anymore. However, we can
prove the following proposition, which is an analogue of Shiu’s result [Shi80, Theorem 1]:

Proposition 4.1. Let L(s, π) be a self-dual L-function of degree d+ 1. For simplicity, we assume
that π is unramified at all finite places. We further assume the following conditions:
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(a) There exists a δ > 0 such that, for the local parameters αi,p i = 1, . . . , d+ 1, we have |αi,p| ≤
p1/2−δ.

(b) The Rankin-Selberg L-function L(s, π ⊗ π) exists and only has a simple pole at s = 1.

Then we have: ∑
n≤x

|µπ(n)| ≪
x

log x
exp

∑
p≤x

|µπ(p)|
p

 .

Remark 4.2. Let π be a self-dual automorphic cuspidal representation of GLd+1(AQ). Then Luo,
Rudnick and Sarnak [LRS99] showed that |αi,p| ≤ p1/2−δ with δ = 1

(d+1)2+1
. In addition, the Rankin-

Selberg convolution L(s, π ⊗ π) is defined and it only has a simple pole at s = 1. (See [CKM04,
Theorem 9.2].) In this case, we can apply the proposition to any self-dual automorphic cuspidal
representations.

Proof of Proposition 4.1: We will use the following lemma [VKS22, Lemma 3.6]:

Lemma 4.3. Let g(n) be a nonnegative multiplicative function. Suppose that there exists an in-
creasing function h1(x) and a positive function h2(x) such that∑

p≤x

g(p) log p ≪ xh1(x)

∑
p≤x

∑
α≥2

g(pα)

pα
log pα ≪ h2(x).

Then we have: ∑
n≤x

g(n) ≪ (h1(x) + h2(x) + 1)
x

log x

∑
n≤x

g(n)

n
.

Set g(n) = |µπ(n)| and we will prove ∑
p≤x

|µπ(p)| log p ≪ x

∑
p≤x

∑
α≥2

|µπ(p
α)|

pα
log pα ≪ 1.

(This shows that we can take h1(x) = 1 and h2(x) = 1.) For the first inequality, we recall:

−L′(s, π ⊗ π)

L(s, π ⊗ π)
=

∞∑
n=1

Λπ⊗π(n)

ns

for Re(s) ≫ 1. It can be shown that Λπ⊗π is a nonnegative function supported on prime powers and
Λπ⊗π(p) = λπ(p)

2 log p = µπ(p)
2 log p. Then by Lemma 5.9 and Theorem 5.13 in [IK04], we have:∑

n≤x

Λπ⊗π(n) ∼ x.
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In this case, we can apply Cauchy’s inequality:

∑
p≤x

|µπ(p)| log p ≤

∑
p≤x

µπ(p)
2 log p

1/2∑
p≤x

log p

1/2

≪ x.

On the other hand, we know that |αi,p| ≤ p1/2−δ and hence |µπ(p
α)| ≪ pα(1/2−δ) for all α ≥ 1. We

also have |µπ(p
α)| = 0 for α > m+ 1. In this case,

∑
p≤x

∑
α≥2

|µπ(p
α)|

pα
log pα ≪

∑
p≤x

m+1∑
α=2

1

pα(1/2+δ)
log pα ≪ 1.

Combine with Lemma 4.3, and we have:∑
n≤x

|µπ(n)| ≪
x

log x

∑
n≤x

|µπ(n)|
n

and we will show: ∑
n≤x

|µπ(n)|
n

≪ exp

∑
p≤x

|µπ(p)|
p

 .

Since |µπ(n)| is a multiplicative function, we have:

∑
n≤x

|µπ(n)|
n

≤
∏
p≤x

(
1 +

|µπ(p)|
p

+ · · ·+ |µπ(p
m+1)|

pm+1

)
.

Then by log(1 + x) ≤ x for x ≥ 0, we have:

∏
p≤x

(
1 +

|µπ(p)|
p

+ · · ·+ |µπ(p
m+1)|

pm+1

)
≤ exp

∑
p≤x

m+1∑
α=1

|µπ(p
α)|

pα


= exp

∑
p≤x

|µπ(p)|
p

+
∑
p≤x

m+1∑
α=2

|µπ(p
α)|

pα

 .

We can show that ∑
p≤x

m+1∑
α=2

|µπ(p
α)|

pα
≪ 1

since |µπ(p
α)| ≪ pα(1/2−δ). This will finish the proof.

Proof of Theorem 1.5: By Proposition 4.1, it suffices to show:∑
p≤x

|λϕ(p)|
p

≤
(
1− 1

12

)
log log x.
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We consider the following inequality in [Hol09, Equation (65)]:

t1/2 ≤ 1 +
1

2
(t− 1)− 1

9
(t− 1)2 +

1

36
(t− 1)3

which is true for t ≥ 0. Take t = |λϕ(p)|2, and we obtain that

|λϕ(p)| ≤
(
1− 1

2
− 1

9
− 1

36

)
+

(
1

2
+

2

9
+

1

12

)
λϕ(p)

2 +

(
−1

9
− 1

12

)
λϕ(p)

4 +
1

36
λϕ(p)

6.

We have the following relations:

λϕ(p)
4 = 2 + 3λSym2ϕ(p) + λSym4ϕ(p)

and
λϕ(p)

6 = 5 + 8λSym2ϕ(p) + 4λSym4ϕ(p) + λSym2ϕ(p)λSym4ϕ(p)

By [IK04, Theorem 5.13], we can show that

∑
p≤x

|λϕ(p)|2

p
= log log x+O(1)

and ∑
p≤x

λSymjϕ(p)

p
= O(1)

for j = 2, 3, 4. (This is due to the fact that they are cuspidal representations of GLj+1.)
We can also write that λSym2ϕ(p)λSym4ϕ(p) = λSym3ϕ(p)

2 − 1. By by Lemma 5.9 and Theorem

5.13 in [IK04], it can be shown that, for π = Sym3ϕ, one has:∑
n≤x

Λπ⊗π(n)

n log n
∼ log log x,

where Λπ⊗π(n) is the von Mangoldt function associated to π ⊗ π. Therefore, we have:

∑
p≤x

λSym3ϕ(p)
2

p
≤ log log x.

Combining all the results together, we have:∑
p≤x

|λϕ(p)|
p

≤
(
1− 1

12

)
log log x
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